Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge

نویسندگان

  • Kelin Wang
  • Yan Hu
چکیده

[1] We expand the theory of critically tapered Coulomb wedge for accretionary prisms by considering stress changes in subduction earthquake cycles. Building on the Coulomb plasticity of the classical theory, we assume an elastic–perfectly Coulomb plastic rheology and derive exact stress solutions for stable and critical wedges. The new theory postulates that the actively deforming, most seaward part of an accretionary prism (the outer wedge) overlies the updip velocity-strengthening part of the subduction fault, and the less deformed inner wedge overlies the velocity-weakening part (the seismogenic zone). During great earthquakes, the outer wedge is pushed into a compressively critical state, with an increase in basal and internal stresses and pore fluid pressure. After the earthquake, the outer wedge returns to a stable state. The outer wedge geometry is controlled by the peak stress of the updip velocity-strengthening part of the subduction fault achieved in largest earthquakes. The inner wedge generally stays in the stable regime throughout earthquake cycles, acting as an apparent backstop and providing a stable environment for the formation of forearc basins. The new theory has important implications for the studies of the updip limit of the seismogenic zone, the evolution of accretionary prisms and forearc basins, activation of splay faults and tsunami generation, evolution of the fluid regime, and mechanics of frontal prisms at margins dominated by tectonic erosion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Earthquake faulting in subduction zones: insights from fault rocks in accretionary prisms

Subduction earthquakes on plate-boundary megathrusts accommodate most of the global seismic moment release, frequently resulting in devastating damage by ground shaking and tsunamis. As many earthquakes occur in deep-sea regions, the dynamics of earthquake faulting in subduction zones is poorly understood. However, the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Expe...

متن کامل

Splay Faults in the Makran Subduction Zone and Changes of their Transferred Coulomb Stress

The Makran subduction zone in northeast and the Sumatra subduction zone (Sunda) in the west have been known as tsunamigenic zones of the Indian Ocean. The 990 km long Makran subduction zone is located offshore of Iran, Pakistan and Oman. Similar to many subduction zones all over the world, the Makran accretionary prism is associated with an imbricate of thrust faults across the zone, which may ...

متن کامل

The 2013 Mw7.7 Balochistan earthquake: Seismic potential of an accretionary wedge

Great earthquakes rarely occur within active accretionary prisms, despite the intense long-term deformation associated with the formation of these geologic structures. This paucity of earthquakes is often attributed to partitioning of deformation across multiple structures as well as aseismic deformation within and at the base of the prism (Davis et al., 1983). We use teleseismic data and satel...

متن کامل

Effects of oceanic ridge subduction on accretionary wedges: Experimental modeling and marine observations

Sandbox modeling is used to study the deformation of accretionary wedges caused by the subduction of oceanic ridges. The first experiment incorporates a massive ridge within a sand wedge. The wedge thickens and shortens when the forward propagation f the basal decollement ceases. The wedge thickening results in taper change, reactivation of preexisting thrusts, and retreat of the frontal part o...

متن کامل

A self-consistent mechanism for slow dynamic deformation and large tsunami generation for earthquakes in the shallow subduction zone

[1] Dynamic pore pressure changes in the overriding wedge above a shallow-dipping plate interface significantly affect the rupture dynamics of shallow subduction zone earthquakes and their tsunamigenesis. For a wedge on the verge of Coulomb failure everywhere including the basal fault, the dynamic pore pressure increase due to up-dip rupture propagation leads to widespread yielding within the w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006